Klaus-Dieter Humpich, Gastautor / 30.04.2019 / 06:06 / 51 / Seite ausdrucken

AKW im Container, frei Bordsteinkante – was nun?

Tote leben länger. Westinghouse ist schon öfter verkauft worden oder pleite gegangen, aber immer wieder wie Phönix aus der Asche auferstanden. Westinghouse hat 1957 weltweit den ersten Druckwasserreaktor (Shippingport, 60 MWel) gebaut und ist am Bau des AP1000 (Druckwasserreaktor der III. Generation, vier bereits in China in Betrieb) in den USA erstickt. Inzwischen ist es unter dem neuen Eigentümer Brookfield erfolgreich restrukturiert.

Ohne Zweifel zählt Westinghouse zu den besonders innovativen Unternehmen auf dem Gebiet der Kerntechnik. Deswegen verwundert es auch nicht, daß sie sich mit ihrem „eVinci“ weltweit an die Spitze der Entwicklung sogenannter „Mikro-Reaktoren“ setzen. Dabei handelt es sich um „Kleinst-Kernkraftwerke“ im Leistungsbereich einiger hundert Kilowatt bis zu etwa 25 Megawatt elektrischer Leistung. Gemeinsam ist dieser Klasse, dass sie vollständig (in Serie) in einer Fabrik gefertigt werden und komplett auf einem LKW (etwa in einem Container) ausgeliefert werden sollen.

Man zielt damit auf einen völlig neuen Markt: Das Kernkraftwerk nicht mehr als Milliarden teueres Großkraftwerk, sondern als dezentrales „Block-Heiz-Kraftwerk“. Ironischerweise ist diese Entwicklung erst durch die wetterabhängige Erzeugung mit Wind und Sonne so richtig angefacht worden. Die einstigen Vorteile des guten alten Stromnetzes – Versorgungssicherheit bei günstigen Kosten – drohen durch die „Regenerativen Energien“ systematisch zerstört zu werden. Will man nicht zurück ins Mittelalter, sind also schnellstens neue Lösungen gefragt.

Will man direkt in die Städte oder Industrieanlagen (Raffinerien, Chemieparks und so weiter), ist die maximale Leistung auf einige zehn Megawatt begrenzt. Diese Kernkraftwerke müssen für einen Inselbetrieb ausgelegt sein: Ohne ein Netz in Betrieb zu nehmen (Schwarzstart), nahezu unterbrechungsfrei laufen (kein Brennelementewechsel), äußerst robust auf Lastschwankungen reagieren können und nicht zuletzt – „sicher sein“.

Bei allen schweren Störfällen – Three Mile Island, Tschernobyl, Fukushima – war der Verlust des Kühlmittels (Wasser) ausschlaggebend. Während des Unfallgeschehens kamen noch Reaktionen des Kühlmittels mit den Reaktorwerkstoffen hinzu: Die Bildung von Wasserstoff und die anschließende Knallgas-Explosion führte zum Beispiel in Fukushima erst zur Freisetzung von radioaktiven Stoffen. Es ist damit logisch, dass der gesamte Kühlwasserkreislauf besondere Sorgfalt bei jeder Wiederholungsprüfung erfordert (Zeitdauer und Kosten) und all seine Bauteile den Kostentreiber „nuclear grade“ erfüllen müssen.

Hinzu kommt, dass insbesondere bei Druckwasserreaktoren erhebliche Druckverluste auftreten, die durch Pumpen mit großer Antriebsleistung ersetzt werden müssen. Ein Ausfall der Stromversorgung, wie zum Beispiel in Fukushima durch die gewaltige Flutwelle, ergibt damit sofort ein ernsthaftes Sicherheitsproblem. Könnte man das Kühlmittel Wasser ersetzen und darüber hinaus noch ein rein passives „Umwälzverfahren“ anwenden, ergäbe sich sofort ein Quantensprung in der Sicherheitstechnik.

Weniger Risiko dank kleinerer Reaktoren

Seit Anbeginn der Kernkrafttechnik hat man Natrium als Kühlmittel verwendet. Neben seinen herausragenden thermodynamischen Eigenschaften besitzt es auch hervorragende neutronenphysikalische Eigenschaften. Allerdings war früher die Marschrichtung eine völlig andere: Man wollte sogenannte „Schnelle Brüter“ bauen, die aus Uran-238 mehr leicht spaltbares Plutonium-239 erzeugen, als sie während ihres Betriebs verbrauchen. Ursache war die falsche Annahme, daß die Vorräte an (wirtschaftlich) gewinnbarem Natururan nur sehr klein wären. Heute schwimmen wir weltweit nicht nur in Natururan, sondern auch bereits in Plutonium. Im Gegenteil, das Plutonium wird als „Endlager-Risiko“ und damit Handicap der Kernenergie betrachtet.

Strebt man einen „Schnellen Brüter“ an, muss dieser ein möglichst großes Volumen haben (Ausfluss von Neutronen), und daraus ergibt sich automatisch eine große Leistung. Schon muss man wieder die gleichen Sicherheitsprobleme wie bei einem Druckwasserreaktor lösen und stets im Griff behalten: großes Kühlmittelvolumen, das auch noch zum Abtransport der Wärme ständig (aktiv) umgepumpt werden muss und unter keinen Umständen verloren gehen darf. Will man jedoch nur einen Reaktor (relativ) kleiner Leistung bauen, kann man diese Probleme geschickt umschiffen.

Beim eVinci wird der Wärmetransport vom festen Kern zum Arbeitsgas durch Wärmerohre (heat pipes) bewerkstelligt. Wärmerohre sind (dünne) Metallrohre, mit einem Docht versehen, die teilweise mit einer Flüssigkeit gefüllt sind und anschließend gasdicht verschweißt werden. Das mit Flüssigkeit gefüllte Ende steckt in der Wärmequelle (Reaktorkern) und das mit Dampf gefüllte Ende in der Wärmesenke (Arbeitsgas). Die Flüssigkeit im Rohr wird nun kontinuierlich verdampft, breitet sich im Rohr aus und kondensiert am gekühlten Ende. Dort bildet sich ein Flüssigkeitsfilm, der durch die Kapillarwirkung im Docht wieder zum heißen Ende zurück strömt. Das Wärmerohr ist also stets mit Sattdampf gefüllt und besitzt dadurch annähernd die gleiche Temperatur an beiden Enden. Ist die Rohrwand dünn und besteht aus gut leitendem Material, können große Wärmeströme durch die Rohroberfläche übertragen werden. Das Wärmerohr kann immer nur in eine Richtung die Wärme transportieren, ist aber durch den „Docht“ nicht von der Lage abhängig.

Schmelzen des Brennstoffs verhindern

Das Temperaturniveau hängt von der Flüssigkeit ab. Im eVinci sollen mit Natrium gefüllte Wärmerohre eingesetzt werden. Natrium hat einen Schmelzpunkt von ungefähr 98°C und einen Siedepunkt von 883°C bei Atmosphärendruck. Die übliche Bandbreite für mit Natrium gefüllte Wärmerohre beträgt etwa 600°C bis 1.200°C. Strebt man eine „niedrige“ Temperatur von 600°C an, muß man im Wärmerohr einen sehr geringen Druck von etwa 0,06 bar einhalten. Die Kombination aus Temperatur und Druck ist keine besondere Herausforderung, da man sich damit noch im Bereich konventioneller Stähle bewegt.

Die Wärmerohre funktionieren vollständig passiv. Der einzige Antrieb ist die Wärmeproduktion im Kern – gleichgültig ob im Betrieb oder als Nachzerfallswärme nach einer Abschaltung. Da jedes einzelne Wärmerohr ein in sich geschlossener Kühlkreislauf ist, stellt ein Versagen einiger Rohre für den Reaktor kein großes Problem dar. Im Gegensatz zu einem kleinen Loch in einem Druckwasserreaktor, das bereits die Sicherheitskette auslösen muss.

Der Kern besteht aus einem massiven Stahlblock, der mit circa 2.000 Längsbohrungen von etwa 1,5 m Länge versehen ist. In den Längsbohrungen stecken die Brennelemente und die Wärmerohre. Das Verhältnis zwischen „Brennstäben“ und Wärmerohren beträgt etwa 1:2. In der Fertigung dieses „durchlöcherten Stahlblocks“ liegt ein zentrales Fertigungsproblem des Reaktors. Mit einfachem Bohren wird es nicht gelingen, da die Wände zwischen den Bohrungen möglichst dünn sein sollten, um eine gute Wärmeübertragung zu gewährleisten. Der Stahlblock gibt der ganzen Konstruktion Halt und Schutz und transportiert die Wärme gleichmäßig zu den Wärmerohren. Es kann also nichts auslaufen, und es steht auch nichts unter Überdruck.

Allerdings fehlt hier noch der Moderator. Bei einem Druckwasserreaktor übernimmt das Wasser selbst die notwendige Abbremsung der Neutronen. Beim eVinci soll Zirkoniumhydrid (ZrH2) diese Aufgabe übernehmen. Wahrscheinlich auch als Legierung aus Uran, Zirkon und Wasserstoff. Für diese Legierungen existieren jahrzehntelange Betriebserfahrungen in den TRIGA-Forschungsreaktoren. Diese Brennstoffe besitzen ein ausgeprägtes Verhalten zur Selbstregulierung der Leistung (stark negativer Temperaturkoeffizient der Reaktivität): Erhöht sich die Brennstofftemperatur ungebührlich, bricht die Kettenreaktion praktisch sofort ein und infolgedessen auch die Wärmeproduktion. Ein Schmelzen des Brennstoffs wird sicher verhindert.

Quasi ein Blockheizkraftwerk ohne Tankstelle

Als Brennelemente sollen TRISO-Elemente verwendet werden. Sie besitzen ausgezeichnete Eigenschaften bezüglich hoher Temperaturbeständigkeit und dem Rückhaltevermögen von Spaltprodukten. Erinnert sei nur an die zwanzigjährige Erfolgsgeschichte des Kugelhaufenreaktors in Jülich. Unzählige Versuche in Deutschland und China haben die „Walk-Away-Sicherheit“ nachgewiesen. Dieser Brennstoff kann auch nach schwersten Störfällen – wie zum Beispiel in Fukushima – nicht schmelzen und damit größere Mengen radioaktiver Stoffe freisetzen.

Allerdings benötigt man bei solch kleinen Reaktoren höher angereichertes Uran als bei Leichtwasserreaktoren. Ferner wird hier das „Batterie-Konzept“ angestrebt. Man liefert den betriebsbereiten Reaktor, schließt ihn an und läßt ihn für mindestens zehn Jahre (nahezu) vollautomatisch und ohne Unterbrechung laufen. Quasi ein Blockheizkraftwerk ohne Tankstelle. Durch die Wahl der TRISO-Brennelemente ist man zukünftig sehr flexibel. Neben Uran (HALEU) sind auch Plutonium und Thorium einsetzbar. Nur die Brennstoffherstellung muss verändert werden.

Da bei dieser Konstruktion der Kern mit seiner Neutronenstrahlung durch die Wärmerohre physikalisch vom Arbeitsmedium CO2 getrennt ist, hat man stets ein „sauberes“ Arbeitsmedium. Man muss also nicht noch einen sekundären Dampf-Kreislauf wie zum Beispiel beim Kugelhaufenreaktor (radioaktiver Staub durch Abrieb der Brennelemente) oder einem mit Natrium gekühlten Reaktor (Aktivierung des Natriums durch schnelle Neutronen) hinzufügen. Dies spart Bauvolumen, Bauteile (die Funktion des Zwischenwärmetauschers übernehmen die Wärmerohre) und letztendlich Kosten. Im Prinzip ist man damit in der Wahl des Arbeitsmediums völlig frei. Allerdings sollte man die „Drucklosigkeit“ dieses Reaktortyps nicht grundlos aufgeben. Druckdifferenz bei hoher Temperatur bedeutet automatisch Wandstärke und damit Gewicht. Der Vorteil des einfachen Transports könnte schnell verloren gehen.

Beim eVinci ist zur Stromproduktion eine Gasturbine mit CO2 als Arbeitsmedium vorgesehen. Mit CO2 als Betriebsstoff besitzt man in der Kerntechnik jahrzehntelange Erfahrung (zum Beispiel die gasgekühlten Kernkraftwerke in Großbritannien). CO2 lässt sich aber auch sehr gut als Medium für eine Gasturbine einsetzen. Man kommt damit mit wesentlich kleineren Arbeitsdrücken als bei Wasser aus. Die hohe angestrebte Betriebstemperatur von 600°C+ bei diesem Reaktor erlaubt trotzdem akzeptable Wirkungsgrade. Noch wichtiger ist die Temperatur am kalten Ende des Turbinenaustritts: Eine Gasturbine arbeitet – anders als eine Dampfturbine – ohnehin mit so hohen Temperaturen, dass problemlos eine Kühlung mit Umgebungsluft möglich ist. Ein nicht zu unterschätzender Vorteil für alle „Wüstengebiete“ beziehungsweise Flüsse, bei denen die zulässige Temperaturerhöhung bereits ausgereizt ist. Momentan ist der Einsatz von Turbinen mit überkritischem CO2-Kreisprozess geplant. Solche Turbinen gibt es bereits für diese Leistungsklasse – ein weiterer Vorteil für die Beschränkung als „Mikroreaktor“. Des Weiteren will man sich im ersten Schritt auf eine Temperatur von 600°C beschränken, so dass man sich noch voll im Bereich konventioneller Kraftwerkstechnik bewegt.

Wieder ein Papierreaktor mehr?

Wieder ein Papierreaktor mehr? Danach schaut es diesmal wahrlich nicht aus. Der eVinci besteht aus Komponenten, an denen bereits seit Jahrzehnten in den amerikanischen  „National Laboratories“ geforscht und entwickelt wird. Das Gesamtkonzept mag revolutionär anmuten, die Grundlagen sind längst in aller Stille geschaffen worden. Deshalb ist der Terminplan auch sehr eng gestrickt. Fertigstellung eines Prototyps – noch ohne Kernbrennstoff – bis Ende 2020. An diesem „Modell“ sollen die Fertigungsverfahren ausprobiert werden und die Berechnungsverfahren et cetera verifiziert werden.

Inbetriebnahme eines Prototyps durch Westinghouse soll noch 2024 erfolgen, die Bereitstellung von genehmigungsfähigen und lieferbaren Reaktoren für das Verteidigungsministerium bis 2026. In diesem Zusammenhang ist interessant, dass die kanadischen Genehmigungsbehörden ein paralleles Genehmigungsverfahren aufgenommen haben. Ziel dort ist die Versorgung abgelegener Minen mit Strom und Wärme. Es ergibt sich damit erstmalig die Situation, dass die Entwicklung eines „Prototypen“ – wie in guten alten Zeiten – in der Hand des Energieministeriums verbleibt. Parallel wird ein kommerzielles Genehmigungsverfahren von zwei nationalen Behörden gleichzeitig entwickelt. Konkurrenz belebt das Geschäft. Das bisher praktizierte „Totprüfen“ durch immer neu erfundene Sicherheitsnachweise – in Stundenlohnarbeit versteht sich – scheint diesmal ausgeschlossen.

Betrachtet man die Ströme an Forschungsgeldern innerhalb der Kerntechnik in den USA der letzten zwei Jahre, so wird der Stellenwert dieses Projekts deutlich. Dies betrifft sowohl die absolute Höhe, als vor allem den relativen Anteil. Große Summen fließen bereits in Fertigungsverfahren. So wird eine vollautomatische Fertigung für die Wärmerohre entwickelt. Diese soll die Produktionskosten auf unter ein Zehntel der bisherigen Kosten senken. Gleiches gilt für die Produktion von TRISO-Brennelementen und eine neue Anreicherungsanlage für HALEU. Erklärtes Ziel ist ein Kraftwerk für einen Preis unter 2.000 US$/kW anzubieten. Ausdrücklich in Konkurrenz zu Erdgas-Kombikraftwerken. Diese Kraftwerke sollen innerhalb von 30 Tagen ab Auslieferung vor Ort einsetzbar sein. Sie sollen in Fabriken, ähnlich denen für Flugzeugtriebwerke, in Serie gefertigt werden.

Warum das alles?

Man mag es gut finden oder nicht. Mal wieder scheint der Krieg Vater aller technischen Entwicklungen zu sein. Das US-Militär befindet sich mitten im Umbruch. Weg von der jahrzehntelangen Jagd auf irgendwelche Taliban mit Kalaschnikows und am Ende der Träume von der „Friedensdividende“ aus dem Zusammenbruch der Sowjetunion. China wird immer aggressiver (Südchinesisches Meer) und Parallelen zum Japan der 1930er Jahre erscheinen immer beängstigender. Hinzu kommt der Potentat Putin mit seinen Eskapaden in Osteuropa und Syrien, der sich inzwischen als die beste Werbeabteilung der amerikanischen Rüstungsindustrie erweist. Man muss sein Geschwafel über seine Wunderwaffen nur wörtlich nehmen und schon hat man Vorlagen für neue Rüstungsprogramme.

Im Rahmen der Umstrukturierung wird immer deutlicher, dass der nächste „große Krieg“ voll elektrisch wird: immer mehr Radaranlagen, immer mehr Datenverkehr, immer mehr Computer und sogar Laser-Waffen. All dies erfordert immer mehr elektrische Leistung, möglichst nah an der Front. Diese Energieerzeugungsanlagen müssen aber ständig mit Treibstoff versorgt werden, was zusätzliche Kräfte bindet – besonders in den Weiten des Pazifiks. Ganz ähnlich ist die Entwicklung bei der Marine. Hinzu kommt dort die neuartige Bedrohung durch präzise Mittelstreckenraketen. Eine Antwort auf diese Bedrohung ist die Kombination aus klassischen Schiffen mit „Roboter-Schiffen“. Diese Schiffe machen aber nur Sinn, wenn sie – ohne Besatzung – quasi endlos über die Weltmeere ziehen können. Kernreaktoren bieten sich als Antrieb geradezu an, sind aber mit heutiger Technik nicht finanzierbar. Billige Mikroreaktoren wären eine Lösung.

Immer wenn sich Militärs etwas in den Kopf gesetzt haben, bekommen sie kurz über lang ihre Wünsche erfüllt. Ganz besonders, wenn in breiten Bevölkerungskreisen eine Angst vor einer konkreten Bedrohung vorhanden ist. Dann spielen Kosten keine Rolle mehr. In den USA ist es schon immer Tradition gewesen, neuartige militärische Entwicklungen möglichst schnell in die zivilen Märkte zu überführen (Spielekonsolen, GPS und so weiter). Geheimhaltung ist sowieso nur beschränkt möglich, aber große Stückzahlen senken die Kosten. In diesem Sinne ist in der Tat mit dem schnellen Aufbau von „Reaktor-Fabriken“ zu rechnen. Dies passt auch zum aktuellen Zeitgeist: Donald Trump ist mit dem Slogan angetreten, die Industriearbeitsplätze zurück zu holen. Er hat dabei sicherlich nicht an Nähereien für Hemden gedacht. Allen, die dies milde als „populistisch“ abgetan haben, könnte das Lachen bald vergehen.

Dieser Artikel erschien zuerst auf Klaus-Dieter Humpichs Webseite nukeklaus.net.

Sie lesen gern Achgut.com?
Zeigen Sie Ihre Wertschätzung!

via Paypal via Direktüberweisung
Leserpost

netiquette:

Kay Parpart / 30.04.2019

an all die fragen wohin mit dem Atom Müll. Der Mensch produziert keinen Atom Müll. Wir wandeln höchstens um von einem Strahlenden Isotop zum anderen. Wenn wir Uran aus der Erde holen ist es schon radioaktiv. Wir machen es nicht radioaktiv. Wenn man also will könnte mann es wieder mit erde vermischen und wegkippen. Ist aber Unsinn, es erst anzureichen und dann wieder im Boden zu verstreuen. Also gesammelt irgendwo unter der Erde lagern. ich Wette in ein paar Jahrzehnten wird sich ein Verwendungszweck finden. Nicht immer alles so pessimistisch sehen. Danke für den Artikel.

Margit Broetz / 30.04.2019

Das ist jetzt hoffentlich ein Scherz? Wie wäre es denn, jedem Mudjahid seinen Kernreaktor?

Ralf Pöhling / 30.04.2019

Ich bin kein Kernphysiker und kann den Artikel nur oberflächlich bewerten. Sollte es sich hier um keine Luftnummer handeln, sollte hier massiv investiert werden. Der geostrategische Vorteil, der durch kompakte, leistungsstarke und dezentrale Stromerzeugung gewonnen wäre, wäre unermesslich.

Michael Löhr / 30.04.2019

@ S. Schaarschmidt, ich bin immer begeistert über diese rumgeisternden Millionen Jahre. Wer erzählt eigentlich so einen Blödsinn? Green Peace oder Claudia Roth?  Mit den 30 Jahren hat Herr Störk zwar zu kurz gegriffen, vermutlich meinte er 300 Jahre, aber der “Atommüll” ist auch nicht unser wirkliches Problem. Wir haben in Deutschland Industrieaschen und -schlämme, Schlacken, Filterstäube, Asbestreste, PCB – also hochgiftige Chlorverbindungen, cyanid-, quecksilber-, phosphor-, und arsenhaltige Abfälle. Und das ist nur ein kleiner Ausschnitt eines hoch-toxischen Chemiecocktails. Der liegt z.B. bei K + S, in Zielitz, ca. 500 Meter unter der Erde, vermutlich sicher für 10.000 Jahre. Die Arsenabfälle würden ausreichen, um die ganze Menschheit mehrfach umzubringen. Und allein von den Mengen sind diese hoch-toxischen Abfälle nicht mit dem Atommüll zu vergleichen. Wir betreiben in Deutschland mit den Erneuerbaren eine selten dumme Materialschlacht, mit z.T. nicht ungiftigen Materalien und hohem Landschaftsfraß, anstatt mit der Kernenergie, auf kleinstem Raum und relativ wenig Müll, richtig viel Energie zu erzeugen. Und was die Kosten angeht. Windstrom allein ist schon nicht billig. Jetzt rechnen Sie noch die ganzen Hilfskrücken ein, die so eine Windmühle benötigt, wie z.B. ein Reservekraftwerk, neben den noch nicht vorhandenen Speichern (Power to Gas?) und den Leitungsnetzen. Und dann sind Sie bei den teuersten (mit den Dänen, die auch so einen Windspleen haben) Strompreisen der Welt. Strompreise im Jahr 2033 von 50 Cent/kWh gelten schon jetzt als sicher,  1 €/kWh bis 2050 sind nicht unrealistisch. Sie und meine Landsleute, werden von den Grünen seit Jahren nach Strich und Faden belogen. Von wegen nur so teuer wie 1 Kugel Eis oder die Sonne schickt keine Rechnung. Und ökologisch ist der Mummenschanz auch nicht. Schauen Sie nach Frankreich, Finnland, Schweden usw., da werden Sie feststellen wie seit Jahren ökologisch Strom produziert wird. Mit Wasserkraft und Kernenergie.

Martin Landvoigt / 30.04.2019

@ S. Schaarschmidt: Die Fragen nach dem Atommüll und meinen, dass die Kernkraftbefürworter die Augen verschließen. Dem ist nicht so: 1. Das Problem wird aufgeblasen. In der Natur gibt es sehr viel natürliche Radioaktivität. Die aktiven Reststoffe sind da weit weniger dramatisch. 2. Starke Strahler haben ein kurze Halbwertszeit, Hier reden wir von Monaten bis wenige hundert Jahre. Schwache Strahler mit langer Halbwertszeit brauchen uns nicht zu beunruhigen. 3. Es gibt viele Standorte, die eine hinreichend sichere Lagerung über Jahrtausende garantieren, U.a. Gorleben. Das Problem wird aber absichtlich dadurch perpetuiert, dass man Lösungen verhindert. 4. Neuer Technologien / Brüter können mit Transmutation Reststoffe verarbeiten, dass die Menge stark reduziert wird. Auch hier haben die Gegner die technische Weiterentwicklung zu stoppen gehofft.  Aber BN-600 und BN-800 laufen bereits.

Karla Kuhn / 30.04.2019

Als Laie kann ich nicht viel dazu sagen, nur Uran strahlt. Ich habe Jahrzehnte in einer Bergwerksstadt gelebt, wo nach dem Krieg von den Russen (WISMUT) Pechblende abgebaut wurde, Viele der Bergleute haben Krebs bekommen, nicht umsonst wurden alle vorzeitig in Rente geschickt. Auch von diesen “kleinen Kraftwerken” wird sicher Stahlung ausgehen.  Ich schätze realistische Artikel, der hier ist mir zu euphorisch und was ich gar nicht mag, ist die Hetze über Putin, die könnte ich auch bei den meisten Mainstream Medien haben !  ” Das US-Militär befindet sich mitten im Umbruch. Weg von der jahrzehntelangen Jagd auf irgendwelche Taliban mit Kalaschnikows .....”  Leider haben Sie dabei vergessen, WIEVIEL ELEND dieser Krieg, von den Russen begonnen aber LEIDER von den AMIS fortgesetzt, gebracht hat. Außerdem waren es nicht nur “Taliban mit Kalschnikows”, es sind durch diesen sinnlosen Krieg HUNDERTTAUSENDE Menschen, auch viele Zivilisten und Soldaten auf allen Seiten ums Leben gekommen. Ihre zynische Art können Sie sich sparen!!

Anders Dairie / 30.04.2019

Lieber Th. BERGER.  Ich fürchte mich regelrecht vor dem Moment eines großflächigem Stromausfalls.  Wobei die Gründe wohl erst nach 1 Woche herauskommen. Geht nur EIN Umspannwerk verloren, wird die Reparatur Wochen dauern. Ich schätze, dass nach einer Woche ergebnislosen Wartens der Teufel in den größeren Städten los ist. Weil das Trinkwasser fehlt.  Es wird geplündert werden.  Eine Chance für ein heiles Davonkommen besteht, wenn ein Fluchtpunkt auf dem Lande existiert.  Doch das dürfte für die meisten Städter unerreichbar sein. Ich weiss von den Altvorderen, dass nach Bombenangriffen die Strom- und Wasserversor-gung im Mittelpunkt stand.  Die kaputten Städte starben nie ganz, weil die gesamte arbeitsfähige Bevölkerung in Notfallpläne eingebunden war.  Heute gibt es nicht mal die Vorstellung davon, welcher Leidensdruck aufkommen wird.

H. Störk / 30.04.2019

@ S. Schaarschmidt: >> “Wohin mit dem strahlenden Material für die nächste Million Jahre, welches bei dieser Art der Energiegewinnung zwangsläufig anfällt? ” << Meinen Sie die Thorium-Halden, die bei der Gewinnung von Seltenen Erden für Windräder und Tesla-Autos anfallen? Ach nein, Sie meinen das Plutonium aus den Leichtwasserreaktoren. Die gute Nachricht lautet: keines von beiden muß man “endlagern”. Moderne Reaktoren können beides verwerten. Übrig bleiben nur Spaltprodukte mit Halbwertzeiten unter 30 Jahren. Also, wenn Sie das Plutonium-Problem lösen wollen (einschließlich abgerüsteter Waffen), dann brauchen sie nicht weniger, sondern mehr und modernere Kernreaktoren.

Weitere anzeigen Leserbrief schreiben:

Leserbrief schreiben

Leserbriefe können nur am Erscheinungstag des Artikel eingereicht werden. Die Zahl der veröffentlichten Leserzuschriften ist auf 50 pro Artikel begrenzt. An Wochenenden kann es zu Verzögerungen beim Erscheinen von Leserbriefen kommen. Wir bitten um Ihr Verständnis.

Verwandte Themen
Klaus-Dieter Humpich, Gastautor / 17.08.2024 / 06:15 / 85

Robert Habeck und die Ursünde der Planwirtschaft

Fängt man einmal an, die Marktwirtschaft durch staatliche Vorgaben zu ersetzen, verstrickt man sich in immer kompliziertere und abstrusere Regelungen der Details. Aktuell zu beobachten…/ mehr

Klaus-Dieter Humpich, Gastautor / 27.07.2024 / 06:00 / 52

Die Wärmefalle

Das Heizen in Deutschland verbraucht das Fünffache der gesamten derzeitigen Wind- und Sonnenproduktion. Fallen die fossilen Energien weg, ist die Wärmeversorgung praktisch unmöglich. Ohne eine…/ mehr

Klaus-Dieter Humpich, Gastautor / 09.05.2024 / 06:25 / 38

Sozioökonomie einer AKW-Baustelle

Der Besuch einer modernen AKW-Baustelle zeigt eindrücklich, dass Deutschland nicht nur eine sichere Stromversorgung verloren hat, sondern eine Armada von Jobs und Berufen mit wirtschaftlichen…/ mehr

Klaus-Dieter Humpich, Gastautor / 07.03.2024 / 12:00 / 15

Plan B für die Kernkraft

Man kann jedes Produkt über den Preis kaputt machen. Insofern war die Strategie der „Atomkraftgegner“ höchst erfolgreich. Wer das rückgängig machen will, muss vor allem…/ mehr

Klaus-Dieter Humpich, Gastautor / 01.03.2024 / 12:00 / 10

Wie Kernkraftwerke teuer gemacht werden

Kernkraftwerke sind teuer. Schuld daran sind unter anderem Regulierungen, Sicherheitsvorschriften und der ewige Kampf zwischen „Kernkraft-Gegnern" und „Kernkraft-Befürwortern". Der Bau von Kernkraftwerken (KKW) in den…/ mehr

Klaus-Dieter Humpich, Gastautor / 09.02.2024 / 06:00 / 27

Strahlend nachhaltige Kreislaufwirtschaft

Der „Abfall“ in der Atomenergie lässt sich effektiv nutzen. Wie können abgebrannte Kernbrennstoffe (Ökosprech: „Atommüll“) wiederaufbereitet werden? Hier ein Überblick über die diversen Verfahren. Die…/ mehr

Klaus-Dieter Humpich, Gastautor / 18.11.2023 / 10:00 / 19

Energiewende auf Tschechisch: Mehr AKWs wagen!

Unser Nachbar – mit gemeinsamer Grenze zu Bayern und Sachsen – scheint nicht dem deutschen Sonnenkult und dem Charme der Windräder zu erliegen. Nein, dort…/ mehr

Klaus-Dieter Humpich, Gastautor / 02.10.2023 / 14:00 / 10

Großbritanniens Plutonium: Abfall oder Glücksfall?

Großbritannien hat seit 1950 einen stattlichen Vorrat (allein über 140 Tonnen aus der zivilen Nutzung) an Plutonium angesammelt, mit dem nun etwas geschehen muss. Für Atomkraftgegner…/ mehr

Unsere Liste der Guten

Ob als Klimaleugner, Klugscheißer oder Betonköpfe tituliert, die Autoren der Achse des Guten lassen sich nicht darin beirren, mit unabhängigem Denken dem Mainstream der Angepassten etwas entgegenzusetzen. Wer macht mit? Hier
Autoren

Unerhört!

Warum senken so viele Menschen die Stimme, wenn sie ihre Meinung sagen? Wo darf in unserer bunten Republik noch bunt gedacht werden? Hier
Achgut.com